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Abstract
We will present an extension of the standard model of particle physics
in its almost-commutative formulation. This extension is guided by the
minimal approach to almost-commutative geometries employed by Iochum
et al (2004 J. Math. Phys. 45 5003 (Preprint hep-th/0312276)), Jureit
and Stephan (2005 J. Math. Phys. 46 043512 (Preprint hep-th/0501134)),
Schücker (2005 Preprint hep-th/0501181), Jureit et al (2005 J. Math. Phys.
46 072303 (Preprint hep-th/0503190)) and Jureit and Stephan (2006 Preprint
hep-th/0610040), although the model presented here is not minimal itself. The
corresponding almost-commutative geometry leads to a Yang–Mills–Higgs
model which consists of the standard model and two new fermions of opposite
electromagnetic charge which may possess a new colour-like gauge group. As
a new phenomenon, grand unification is no longer required by the spectral
action.

PACS number: 11.15.−q
Mathematics Subject Classification: 81T13

1. Introduction

Understanding the origin of the standard model is currently one of the most challenging issues
in high-energy physics. Indeed, despite its experimental successes, it is fair to say that its
structure remains a mystery. Moreover, a better understanding of its structure would provide us
with a precious clue towards its possible extensions. This can be achieved in the framework of
noncommutative geometry [1], which is a branch of mathematics pioneered by Alain Connes,
aiming at a generalization of geometrical ideas to spaces whose coordinates fail to commute.
Motivated by quantum gravity, it is postulated that spacetime is a wildly noncommutative
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manifold at a very high energy. Even if the precise nature of this noncommutative manifold
remains unknown, it seems legitimate to assume that at an intermediate scale, say a few
orders of magnitude below the Planck scale, the corresponding algebra of coordinates is only
a mildly noncommutative algebra of matrix-valued functions, called almost-commutative
geometries. When suitably chosen, such a matrix algebra, a sum of three simple matrix
algebras, reproduces, within the spectral action principle, the standard model coupled to
gravity [2].

Ten years after its discovery [2], the spectral action has recently received new impetus
[3–5] by allowing a Lorentzian signature in the internal space. This mild modification has
three consequences. The fermion-doubling problem [6] is solved elegantly, Majorana masses
and consequently the popular seesaw mechanism are allowed for. The Majorana masses in
turn decouple the Planck mass from the W mass. Furthermore, Chamseddine, Connes and
Marcolli point out an additional constraint on the coupling constants tying the sum of all
Yukawa couplings squared to the weak gauge coupling squared. This relation already holds
for Euclidean internal spaces [7].

For many years, it has been tried to construct models from noncommutative geometry that
go beyond the standard model [8]. But these attempts failed to come up with anything physical
if it was not to add more generations and right-handed neutrinos to the standard model. For
example, the noncommutative constraints on the continuous parameters of the standard model
with four generations fail to be compatible with the hypothesis of the big desert [9].

The situation changed recently, when a classification of the finite part of almost-
commutative geometries with up to four summands in the matrix algebra was performed [13].
This classification necessitated the heavy use of a computer program [10] to list the irreducible
Krajewski diagrams. Here, the standard model appears in a most prominent position. But
also the so-called electro-strong model was discovered which inspired the first viable almost-
commutative model beyond the standard model: the AC-model [11]. It comes from an algebra
with six summands and is identical to the standard model with two additional leptons A2−

and C2+ whose electric charge is 2 in units of the electron charge. These new leptons couple
neither to the charged gauge bosons, nor to the Higgs scalar. Their hypercharges are vector-
like, so that they do not contribute to the electro-weak gauge anomalies. Their masses are
gauge-invariant and they constitute viable candidates for cold dark matter [12].

In this paper, we will use a version of the standard model based on a matrix algebra with
four summands [13]. We will investigate a new extension of the standard model which is also
inspired by the classification of irreducible almost-commutative geometries [13] and extends
the standard model by N generations of left-handed SU(2) doublets and right-handed singlets.
These new particles may also possess a new colour group, SU(D), with respect to which the
standard model particles are singlets, i.e. neutral. They resemble closely to the θ particles
which were proposed by Okun [14].

One of the main results of this paper is the fact that the constraints on the gauge couplings
of the standard model no longer resemble those of grand unified theories. The new relation
is given in equation (4.12). If the extensions of the standard model interact via the weak or
the strong interactions, this seems to be a general feature in almost-commutative geometry.
For colour groups SU(D) with D � 3, one finds also that at least three generations of new
particles are needed.

The paper is organized as follows. We first give the basic notions of a spectral triple, the
main building block of noncommutative geometry. Then we quickly review how the Yang–
Mills–Higgs model is obtained via the fluctuated Dirac operator and the spectral action. This
account is far from exhaustive and we refer to [2, 5, 15] for a detailed presentation.
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For the new particles, the details of the spectral triple and the lift of the automorphisms
are given. The Lagrangian as well as the constraints on the couplings are calculated. With
the help of the one-loop renormalization group equations, the masses of the new particles, the
Higgs boson mass and, if applicable, the value of the gauge coupling at low energies for the
new colour group are calculated.

2. Finite spectral triples

In this section, we will give the necessary basic definitions of almost-commutative geometries
from a particle physics point of view. For our calculations, only the finite part matters, so we
restrict ourselves to real, finite spectral triples in KO-dimension six: (A,H,D, J, χ). Note
that in the literature before [3–5], the finite part of the spectral triple was considered to be of
KO-dimension zero. The change in this algebraic dimension amounts in some sign changes,
i.e. the commutator for the real structure and the chirality changes into an anticommutator and
the antiparticles have opposite chirality with respect to the particles.

2.1. Basic definitions

The algebra A is a finite sum of matrix algebras A = ⊕N
i=1Mni

(Ki ), with Ki = R, C, H, where
H denotes the quaternions. A faithful representation ρ of A is given on the finite-dimensional
Hilbert space H. The Dirac operator D is a selfadjoint operator on H and plays the role of
the fermionic mass matrix. J is an anti-unitary involution, J 2 = 1, and is interpreted as
the charge conjugation operator of particle physics. The chirality χ is a unitary involution,
χ2 = 1, whose eigenstates with eigenvalue +1(−1) are interpreted as right (left) particle states
and −1(+1) for right (left) antiparticle states. These operators are required to fulfil Connes’
axioms for spectral triples.

• [J,D] = {J, χ} = {D, χ} = 0,
[χ, ρ(a)] = [ρ(a), Jρ(b)J−1] = [[D, ρ(a)], Jρ(b)J−1] = 0, ∀ a, b ∈ A.

• The chirality can be written as a finite sum χ = ∑
i ρ(ai)Jρ(bi)J

−1. This condition is
called orientability.

• The intersection form ∩ij := tr(χρ(pi)Jρ(pj )J
−1) is non-degenerate, det ∩ �= 0. The

pi are minimal rank projections in A. This condition is called Poincaré duality.

Now the Hilbert space H and the representation are ρ decomposed into left and right,
particle and antiparticle spinors and representations:

H = HL ⊕ HR ⊕ Hc
L ⊕ Hc

R, ρ = ρL ⊕ ρR ⊕ ρc
L ⊕ ρc

R.

In this representation, the Dirac operator has the form

D =




0 M 0 0
M∗ 0 0 0

0 0 0 M
0 0 M∗ 0


 ,

where M is the fermionic mass matrix connecting the left-handed and the right-handed
fermions.

Since the individual matrix algebras have only one fundamental representation for
K = R, H and two for K = C (the fundamental one and its complex conjugate), ρ may
be written as a direct sum of these fundamental representations with multiplicities

ρ
(⊕N

i=1 ai

)
:= (⊕N

i,j=1 ai ⊗ 1mji
⊗ 1(nj )

) ⊕ (⊕N
i,j=1 1(ni ) ⊗ 1mji

⊗ aj

)
.
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The first summand denotes the particle sector and the second the antiparticle sector. For the
dimensions of the unity matrices, we have (n) = n for K = R, C and (n) = 2n for K = H

and the convention 10 = 0. The multiplicities mji are non-negative integers. Acting with the
real structure J on ρ permutes the main summands and complex conjugates them. It is also
possible to write the chirality as a direct sum

χ = (⊕N
i,j=1 1(ni ) ⊗ χji1mji

⊗ 1(nj )

) ⊕ (⊕N
i,j=1 1(ni ) ⊗ (−χji)1mji

⊗ 1(nj )

)
,

where χji = ±1 according to the previous convention on left-(right-)handed spinors. One
can now define the multiplicity matrix µ ∈ MN(Z) such that µji := χjimji . This matrix is
symmetric and decomposes into a particle and an antiparticle matrix, the second being just
the particle matrix transposed, µ = µP + µA = µP − µT

P . The intersection form of the
Poincaré duality is now simply ∩ = µ − µT, see [16]. Note that in contrast to the case of
KO-dimension zero, the multiplicity matrix is now antisymmetric rather than symmetric.

2.2. Obtaining the Yang–Mills–Higgs theory

To construct the actual Yang–Mills–Higgs theory, one starts out with the fixed (for convenience
flat) Dirac operator of a four-dimensional spacetime with a fixed fermionic mass matrix. To
generate curvature, a general coordinate transformation is performed and then the Dirac
operator is fluctuated. This can be achieved by lifting the automorphisms of the algebra to
the Hilbert space, unitarily transforming the Dirac operator with the lifted automorphisms and
then building linear combinations. Again it is sufficient to restrict the treatment to the finite
case.

All the automorphisms of matrix algebras connected to the unity element, Aut(A)e, are
inner, i.e. they are of the form

iua = uau∗, a ∈ A, (2.1)

where

u ∈ U(A) = {u ∈ A|u∗u = uu∗ = 1} (2.2)

is an element of the group of unitaries of the algebra and i is a map from the unitaries into the
inner automorphisms Int(A)

i : U(A) −→ Int(A)
(2.3)

u 	−→ iu.

In the kernel of i are the central unitaries, which commute with all elements in A. These
inner automorphisms Int(A) are equivalent to the group of unitaries U(A) modulo the central
unitaries U c(A).

The Abelian algebras R and C do not possess any inner automorphisms. Remarkably,
the quaternions and the matrix algebras over the complex numbers produce the kind of inner
automorphisms that correspond to the non-Abelian gauge groups of the standard model.
Note that the exceptional groups do not appear. They are the automorphism groups of non-
associative algebras.

As in the Riemannian case, the automorphisms close to the identity are going to be lifted
to the Hilbert space. This lift has a simple closed form [17], L = L̂ ◦ i−1 with

L̂(u) = ρ(u)Jρ(u)J−1. (2.4)

Here, two crucial problems occur. The symmetry group of the standard model contains an
Abelian sub-group U(1)Y . But the inner automorphisms do not contain any Abelian sub-
groups by definition. Furthermore, the lift is multivalued for matrix algebras over the complex
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numbers since the kernel of i contains an U(1)-group. Note that neither the matrix algebras
over the reals nor those over the quaternions have any central unitaries close to the identity.
The solution to both of these problems is to centrally extend the lift, i.e. to adjoin some central
elements [15]. One has to distinguish between central unitaries stemming from the Abelian
algebra C and those from the non-Abelian matrix algebras Mn(C), n � 2. To simplify, let
the algebra A be a sum of matrix algebras over the complex numbers. Furthermore, the
commutative and noncommutative sub-algebras will be separated,

A = C
M ⊕

N⊕
k=1

Mnk
(C) � (b1, . . . , bM, c1, . . . , cN), nk � 2. (2.5)

The group of unitaries U(A) and the group of central unitaries U c(A) are then given by

U(Af ) = U(1)M × U(n1) × · · · × U(nN) � u = (v1, . . . , vM,w1, . . . , wN),

U c(Af ) = U(1)M+N � uc = (
v1, . . . , vM,wc

11n1 , . . . , w
c
N1nN

)
.

(2.6)

The inner automorphisms follows

Int(A) = U(A)/U c(A) � uin = (
1, . . . , 1, win

1 , . . . , win
N

)
, (2.7)

with win
j ∈ U(Mnj

)/U(1). The lift L = L̂ ◦ i−1 can be written explicitly with

L̂ = ρ(1, . . . , 1, w1, . . . , wM)Jρ(. . .)J−1. (2.8)

It is multivalued due to the kernel of i, ker(i) = U c(Af ). This multivaluedness can be cured
by introducing an additional lift � for the central unitaries, which is restricted to those unitaries
Unc(A) stemming from the noncommutative part of the algebra,

�
(
wc

1, . . . , w
c
N

)
:= ρ


 N∏

j1=1

(
wc

j1

)q1,j1 , . . . ,

N∏
jM=1

(
wc

jM

)qM,jM ,

N∏
jM+1=1

(
wc

jM+1

)q1,jM+1 1n1 , . . . ,

×
N∏

jM+N =1

(
wc

jM+N

)q1,jM+N 1nN


 Jρ(. . .)J−1, (2.9)

with the (M + N) × N matrix of charges qk,j . The extended lift L is then defined as

L(ui, wc) := (L̂ ◦ i−1)(ui)�(wc), ui ∈ Int(A), wc ∈ Unc(A).

For convenience, this lift will be written L(u) without making the specific distinction between
the unitaries and the central unitaries.

In this way, the Abelian gauge groups have been introduced and the multivaluedness has
been reduced, depending on the choice of the matrix of charges.

The fluctuation fD of the Dirac operator D is given by a finite collection f of real numbers
rj and algebra automorphisms uj ∈ Aut(A)e such that

fD :=
∑

j

rjL(uj )DL(uj )
−1, rj ∈ R, uj ∈ Aut(A)e.

These fluctuated Dirac operators build an affine space which serves as the configuration space
for the Yang–Mills–Higgs theory. Only fluctuations with real coefficients are considered
since fD must remain selfadjoint. The sub-matrix of the fluctuated Dirac operator fD which
is equivalent to the mass matrix M, is often denoted by ϕ, the ‘Higgs scalar’, in physics
literature.

As mentioned in the introduction, an almost-commutative geometry is the tensor product
of a finite noncommutative triple with an infinite, commutative spectral triple. By Connes’
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reconstruction theorem [18, 19], it is known that the latter comes from a Riemannian spin
manifold, which will be taken to be any four-dimensional, compact manifold. The spectral
action of this almost-commutative spectral triple is defined to be the number of eigenvalues
of the Dirac operator fD up to a cutoff �. Via the heat-kernel expansion one finds, after a
long and laborious calculation [2, 5], a Yang–Mills–Higgs action combined with the Einstein–
Hilbert action, a cosmological constant, a term containing the Weyl tensor squared as well as
a conformal coupling of the Higgs field to the curvature scalar:

SCC[e,AL/R, ϕ] = tr

[
h

(
fD2

�2

)]

=
∫

M

{
2�c

16πG
− 1

16πG
R + a(5R2 − 8RµνR

µν − 7RµνλτR
µνλτ )

+
∑

i

1

2g2
i

tr F ∗
iµνF

µν

i +
1

2
(Dµϕ)∗Dµϕ + λ tr(ϕ∗ϕ)2 − 1

2
µ2 tr(ϕ∗ϕ)

+
1

12
tr(ϕ∗ϕ)R

}
dV + O(�−2), (2.11)

where h : R+ → R+ is a positive test function. The coupling constants are functions of the
first moments h0, h2 and h4 of the test function

�c = α1
h0

h2
�2, G = α2

1

h2
�−2, a = α3h4,

g2
i = α4i

1

h4
, λ = α5

1

h4
, µ2 = α5

h2

h4
�2.

(2.12)

The curvature terms Fµν and the covariant derivative Dµ are in the standard form of the
Yang–Mills–Higgs theory. The constants αj depend in general on the special choice of matrix
algebra and on the Hilbert space, i.e. on the particle content. For details of the computation,
we refer to [2, 5].

This action is valid at the cutoff � where it ties together the coupling constants gi of
the gauge connections and the Higgs coupling λ since they originate from the same heat-
kernel coefficient. For the standard model with three generations, the calculation of the gauge
couplings in (2.12) imposes at � conditions on the U(1)Y , SU(2)w and SU(3)c couplings
g1, g2 and g3 comparable to those of grand unified theories:

5g2
1 = 3g2

2 = 3g2
3 . (2.13)

But since the lift of the automorphisms produces extra free parameters through the U(1) central
charges, the first equality can always be fulfilled by a different choice of the central charge.
Therefore, only the gauge couplings of noncommutative gauge groups underlie constraints
from the spectral action.

In the same way as for the gauge couplings, the spectral action also implies constraints
for the quartic Higgs coupling λ and the Yukawa couplings. The full set of constraints for the
standard model reads [3, 5, 7]

3g2
2 = 3g2

3 = 3
Y 2

2

H

λ

24
= 3

4
Y2. (2.14)

Here, Y2 is the sum of all Yukawa couplings gf squared, H is the sum of all Yukawa couplings
raised to the fourth power. Our normalizations are mf = √

2(gf /g2)mW, (1/2)(∂ϕ)2 +
(λ/24)ϕ4.

As we will see in the following, the grand unified constraint g2
2 = g2

3 at the cutoff � is a
very special case. It is valid for the standard model but in general it will not hold. The model
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presented in this paper is one example for different constraints for g2 and g3 at the cutoff energy.
For possible extensions of the standard model within the framework of almost-commutative
geometry, these constraints may limit the particle content in a crucial way.

3. The spectral triple

The basic entity of the spectral triple is the matrix algebra. For the model under consideration,
it is

A = H ⊕ C ⊕ M3(C) ⊕ C ⊕ MD(C) ⊕ C � (a, b, c, d, e, f ). (3.1)

It has the algebra ASM of the standard model as a sub-algebra and contains two new summands
Anew.

ASM = H ⊕ C ⊕ M3(C) ⊕ C and Anew = MD(C) ⊕ C. (3.2)

This particular model is inspired by the classification of almost-commutative geometries
presented in [13]. For one generation in the standard model and the new particles, it is a
slightly modified irreducible spectral triple in the sense that one right-handed new particle can
be deleted from the spectral triple without violating the axioms. But in this case the physical
model would not be free of anomalies and has therefore to be discarded. We do not want to
go into all the details of the construction, but for the interested reader we give the Krajewski
diagram of this almost-commutative spectral triple in the appendix.

The representation of the algebra on the Hilbert space is the usual one for the standard
model. For the new part, the representation is given by

ρL(a) = a ⊗ 1D, ρR(f ) =
(
f 1D 0

0 f̄ 1D

)
,

ρc
L(e) = 12 ⊗ e, ρc

R(e) =
(
e 0
0 e

)
.

(3.3)

The complete representation is then the direct sum of the standard model representation and
the new part:

ρ = ρSM ⊕ ρnew with ρnew(a, e, f ) = ρL(a) ⊕ ρR(f ) ⊕ ρc
L(e) ⊕ ρc

R(e). (3.4)

The same holds for the Hilbert space, H = HSM ⊕ Hnew. For one generation of the new
particles, the Hilbert space is

Hnew = (C2 ⊗ C
D) ⊕ (C ⊗ C

D) ⊕ (C ⊗ C
D) ⊕ antiparticles. (3.5)

The dimension of Hnew depends on the number of generations N of the new particles and the
size D of the sub-algebra MD(C) and reads dim(Hnew) = 8ND.

We will denote the spinors of the new particles by ψ1 and ψ2. They appear as left-handed
SU(2) doublets and right-handed SU(2) singlets(

ψ1

ψ2

)
L

⊕ (ψ1)R ⊕ (ψ2)R ⊕
(
ψc

1

ψc
2

)
L

⊕ (
ψc

1

)
R

⊕ (
ψc

2

)
R

∈ Hnew. (3.6)

Furthermore, every ψi is a SU(D) D-plet for D � 2. The Dirac operator contains the Yukawa
couplings of the new particles

Mnew =
(
gψ1 0
0 gψ2

)
⊗ 1D with gψ1, gψ2 ∈ C (3.7)
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and is given by

Dnew =




0 Mnew 0 0
M∗

new 0 0 0
0 0 0 Mnew

0 0 M∗
new 0


 . (3.8)

For more than one generation, it is of course possible to introduce a CKM-type matrix which
mixes the generations. But to keep the analysis of the model as simple as possible, we will
not include family mixing.

From the Krajewski diagram, figure A1 in the appendix, it is straightforward to see that
all the axioms for the spectral triple are fulfilled. To the three generations of the standard
model, one may add any number N of generations of the new particles with an arbitrarily large
sub-algebra MD(C). In the following, we will investigate the physical models with respect to
the number of generations of new particles N and with respect to the size D of the sub-algebra.

4. The gauge group, the lift and the constraints

The group of unitaries of the noncommutative part of the algebra is

Unc(A) = SU(2)w × U(3) × U(D) � (v,w, s) for D � 2. (4.1)

In the case of D = 1, the group is just Unc(A) = SU(2) × U(3), as for the standard model.
Define u := det(w) ∈ U(1)1 and r := det(s) ∈ U(1)2. Note that in case of D = 1, s and r
can simply be dropped from the following calculations.

The lift of the unitaries decomposes into a standard model part and a part for the new
particles,

L(v, up1sq1 , up2sq2w, up3sq3 , up4sq4r, up5sq5) = LSM(v, up1sq1 , up2sq2w, up3sq3)

⊕ Lnew(v, up4sq4r, up5sq5), (4.2)

with pi, qi ∈ Z. This lift produces a priori two U(1) groups through the central extensions
u and r. But it has been shown in [13] that in the case of two U(1) groups the requirement
of being anomaly free results in proportional couplings of the U(1)’s to the standard model
particles. The two photons can therefore be linearly combined into a physical photon and an
unphysical photon that does not couple to the standard model. Without loss of generality, we
can therefore set q1 = q2 = q3 = 0. For the standard model part of the lift, one finds then
p1 = −p3 = −1/2 and p2 = 1/6 − 1/3 from anomaly cancellation. This reduces U(3) to
U(1)Y × SU(3)c in the correct representation.

The exact form of the lift for the new particles is given by

Lnew(v, up4sq4r, up5sq5) = diag[up4sq4v ⊗ r; up4+p5sq4+q5r, up4−p5sq4−q5r]. (4.3)

Being anomaly free and requiring that the corresponding left-handed and right-handed
particles are equally charged under the little group leads to p4 = q5 = 0, q4 = −1/D

and p5 = p1 = −1/2. Since the normalization of the lift for the right-handed electron is
chosen to be YeR

= 2p1 = −1, one sees immediately that YψL
= 0, YψR

= ±p1 = ∓1/2.
Therefore, the electromagnetic charge of the new particles is Qel = ±1/2e. This charge
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assignment is summarized in the following table:

I I3 Ynew Qel SU(D)

(ψ1)L 2 + 1
2 0 + e

2 D

(ψ2)L 2 − 1
2 0 − e

2 D

(ψ1)R 1 0 1
2 + e

2 D

(ψ2)R 1 0 − 1
2 − e

2 D

Plugging in the numbers one finds for lift

Lnew(v, s−1/Dr, u−1/2) = diag[s−1/Dv ⊗ r; u−1/2s−1/Dr, u1/2s−1/Dr]

= diag[v ⊗ r̃; u−1/2r̃ , u1/2r̃], (4.4)

with r̃ ∈ SU(D)new. For D � 2 the gauge group of the model is then

U(1)Y × SU(2)w × SU(3)c × SU(D)new (4.5)

and for D = 1 it is just the standard model gauge group. It is also remarkable that the inner
fluctuations of the mass matrix Mnew with the lift Lnew produce exactly the standard model
Higgs field ∑

j

rjLL,new
(
vi, r̃i , u

−1/2
i

)
MnewL

−1
R,new

(
vi, r̃i , u

−1/2
i

) = ϕSMMnew, (4.6)

where the subscripts L and R indicate the left-handed and the right-handed parts of the lift.
Therefore, Mnew contains the Yukawa couplings of the new model, in exact analogy to the
standard model.

From the spectral action, one obtains now immediately the Lagrangian for the new
particles,

Lnew = −1

4
tr(GµνG

µν) + i
∑

i=1,...,N

(ψ̄1, ψ̄2)
i
LD

ψ

L

(
ψ1

ψ2

)i

L

+ i
∑

i=1,...,N

(ψ̄1)
i
RD

ψ1
R (ψ1)

i
R + i

∑
i=1,...,N

(ψ̄2)
i
RD

ψ2
R (ψ2)

i
R

−
∑

i=1,...,N

(gψ1)i(ψ̄1, ψ̄2)
i
LϕSM(ψ1)

i
R −

∑
i=1,...,N

(gψ2)i(ψ̄1, ψ̄2)
i
LϕSM(ψ2)

i
R

+ hermitian conjugate, (4.7)

where the covariant derivatives are given by

D
ψ

L = ∂µ + ig2W
k
µ

τk

2
+ ig4G

a
µta (4.8)

D
ψi

R = ∂µ + ig1
Yi

2
Bµ + ig4G

a
µta. (4.9)

Here, g1 and g2 are the standard model U(1)Y and SU(2)w gauge couplings. For D � 2, the
SU(D) gauge coupling is g4, ta are the corresponding generators and Ga

µ are the gauge fields
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with the usual curvature tensor

Gµν = ∂µGν − ∂νGµ − g4[Gµ,Gν]. (4.10)

The SU(D) terms have of course to be dropped from all equations if D = 1.
From the spectral action, it is now straightforward to calculate the constraints on the gauge

couplings, the quartic Higgs coupling and the Yukawa couplings. The normalization of the
quartic Higgs coupling is taken to be the same as for the standard model:

Ng2
4 = 3g2

3 =
(

3 +
ND

4

)
g2

2 = 3
Y 2

2

H

λ

24
= 3

4
Y2. (4.11)

Y2 and H include now the Yukawa couplings of the new particles in the standard way.
One notes immediately that models beyond the standard model in almost-commutative

geometry will in general not exhibit the constraint g2 = g3 from grand unified theories. This
is a qualitatively new feature and may prove to be important in restricting possible extensions
of the standard model within the framework of the spectral action.

In the following analysis, we will for simplicity assume that all the Yukawa couplings of
the new particles in all generations are equal, i.e. gψ1 = gψ2 =: gψ . For more realistic models,
one would of course admit different Yukawa couplings, but as a first estimation of the particle
masses equal couplings should be sufficient. Furthermore, we will assume three generations
for the standard model particles and we will neglect all the standard model Yukawa couplings
safe on the top quark coupling gt . Under these assumptions, the constraints on the couplings
at the cutoff � read:

g2
3 =

(
1 +

ND

12

)
g2

2, (4.12)

g2
4 =

(
3

N
+

D

4

)
g2

2, (4.13)

g2
t = 4 + ND

3

3 + 2NDR2
g2

2 with R := gψ

gt

, (4.14)

λ = 8

(
3 +

ND

4

)
3 + 2NDR4

(3 + 2NDR2)2
g2

2 . (4.15)

Here it becomes obvious that equation (4.12) no longer resembles the grand unification
condition g2

3 = g2
2 as in the case of the pure standard model.

The strategy to find the masses of the new particles and the mass of the Higgs boson
is now the following. With the help of the renormalization group equation for g2 and g3,
one determines the cutoff via condition (4.12). There one can fix g4 and λ with conditions
(4.13) and (4.15). The last free parameter is the ratio R of the Yukawa coupling gψ of the
new particles and the top quark Yukawa coupling gt . This ratio is fixed by the requirement
that the renormalization group flow produces the measured pole mass of the top quark,
mt = 170.9 ± 2.6 GeV [22].

5. The renormalization group equations

We will now give the one-loop β-functions of the standard model with three generations of
the standard model particles, N generations of the new particles with either no new colour,
i.e. D = 1 and MD(C) = C, or with an SU(D) colour group and D � 2. They will
serve to evolve the constraints (4.11) from E = � down to our energies E = mZ . We set:
t := ln(E/mZ), dg/dt =: βg and κ := (4π)−2. We will neglect all the standard model
fermion masses below the top mass and also neglect threshold effects.
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The β-functions are [20, 21]

βgi
= κbig

3
i , bi =

(
41

6
+

ND

3
,−19

6
+

ND

3
,−7,−11

3
N +

4

3
D

)
, (5.1)

βt = κ

[
−

∑
i

cu
i g

2
i + Y2 +

3

2
g2

t

]
gt , (5.2)

βψ1 = κ

[
−

∑
i

c
ψ

i g2
i + Y2 +

3

2
g2

ψ1
− 3

2
g2

ψ2

]
gψ1 , (5.3)

βψ2 = κ

[
−

∑
i

c
ψ

i g2
i + Y2 +

3

2
g2

ψ2
− 3

2
g2

ψ1

]
gψ2 , (5.4)

βλ = κ

[
9

4

(
g4

1 + 2g2
1g

2
2 + 3g4

2

) − (
3g2

1 + 9g2
2

)
λ + 4Y2λ − 12H + 4λ2

]
, (5.5)

with

ct
i =

(
17

12
,

9

4
, 8

)
, c

ψ

i =
(

3

4
,

9

4
, 0, 3

D2 − 1

D

)
, (5.6)

Y2 = 3g2
t + NDg2

ψ1
+ NDg2

ψ2
, H = 3g4

t + NDg4
ψ1

+ NDg4
ψ2

. (5.7)

For the case D = 1, the β-functions of g4 and c
ψ

4 are to be ignored. The gauge couplings
decouple from the other equations and have identical evolutions in both energy domains:

gi(t) = gi0
/√

1 − 2κbig
2
i0t . (5.8)

The initial conditions are taken from experiment [22]

g10 = 0.3575, g20 = 0.6514, g30 = 1.221. (5.9)

Then, the unification scale � is the solution of
(
1 + ND

12

)
g2(ln(�/mZ)) = g3(ln(�/mZ)),

� = mZ exp
g−2

20 − (
1 + ND

12

)2
g−2

30

2κ
(
b2 − (

1 + ND
12

)2
b3

) , (5.10)

and depends on the number of generations of new particles N and the size of the matrix
algebra D.

6. The masses and the couplings at mZ

We require that all couplings remain perturbative and we obtain the pole masses of the Higgs,
the top and the new particles:

m2
H = 4

3

λ(mH)

g2(mZ)2
m2

W, mt =
√

2
gt (mt)

g2(mt)
mW, mψ1 = mψ2 = gψ(mψ)

g2(mZ)2
m2

W . (6.1)

As an experimental input, we have the initial conditions of the three standard model gauge
couplings (5.9) and the mass of the top quark, mt = 170.9 ± 2.6 GeV [22]. As mentioned
before, the masses of the new particles are assumed to be equal. With the constraints (4.12)–
(4.15), we can now determine their numerical value via the renormalization group flow and
we can also determine the mass of the Higgs boson for the respective model.
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Let us start with the case D = 1,MD(C) = C. The gauge group for this model is just the
standard model gauge group. For up to three generations of the new particles, the resulting
masses and cutoff energies are summarized in the following table:

N � (GeV) mH (GeV) mψ (GeV)

1 5.3 × 1013 167.3 ± 3.4 69.3 ∓ 3.5

2 3.0 × 1011 172.0 ± 3.2 53.7 ∓ 2.5

3 7.4 × 109 177.8 ± 2.5 48.0 ∓ 1.6

The new particles are very light. And since they possess electromagnetic charge, they should
clearly have been detected if they existed [22]. This model has therefore to be discarded.

Next we consider the case D = 2. The gauge group for the model is U(1)Y × SU(2)w ×
SU(3)c ×SU(2)new. The standard model particles and the Higgs boson are SU(2)new singlets.
For one generation, it is not possible to solve the constraint (4.13) within the real numbers,
i.e. g4(t) has a pole below the cutoff. For two and three generations, the resulting masses and
cutoff energies are

N � (GeV) mH (GeV) mψ (GeV) g4(mZ)

2 4.4 × 108 182.3 ± 2.3 69.6 ∓ 2.3 1.50

3 8.3 × 106 196.7 ± 2.5 50.2 ∓ 1.7 0.91

The detectability of these particles is not as obvious as in the case without a new colour.
First of all, the gauge coupling g4 is strong, so one should expect confinement. Therefore,
the new particles will, as quarks, not appear as free particles but bound into colour singlets.
These composite particles could allow to escape from detectors if they are neutral and thus
hide the new particles from detection. It is beyond the scope of this paper to give an analysis
of the phenomenological details of the models, so we will postpone this analysis for a later
publication.

For D � 2 the gauge coupling g4(t) has a pole below the cutoff for one and two generations
of the new particles. So three generations is the minimal number. We give the cutoff energies,
the masses of the new particles and the Higgs mass with respect to D are for three generations
of the new particles.

D � (GeV) mH (GeV) mψ (GeV) g4(mZ)

3 2.1 × 105 217.0 ± 1.5 56.5 ∓ 1.1 1.22

4 2.0 × 104 241.2 ± 1.6 62.3 ∓ 1.3 1.54

5 4.1 × 103 268.3 ± 0.8 65.8 ∓ 0.7 1.78

6 1.3 × 103 300.6 ± 0.8 63.6 ∓ 0.7 1.81

7 524 338.2 ± 0.7 57.6 ∓ 0.4 1.70

8 261 379.3 ± 0.9 50.7 ∓ 0.5 1.53
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With respect to the detectability, the same arguments apply as for the case D = 2. The
coupling g4 is very strong for all models, so small confinement radii are to be expected.
It is also interesting to note that the mass of the Higgs boson is strongly dependent on
the cutoff scale. This reminds us of the older Connes–Lott model [23] which predicted
a Higgs mass of mH,C−L ∼ 250–324 GeV [24]. For D � 8 the cutoff energy becomes
smaller than the Higgs mass. This is also an interesting new feature that deserves further
investigation.

7. Conclusions and outlook

We have presented a particle model based on an almost-commutative geometry which contains
the standard model as a sub-model. It provides an extension of the standard model with N
generations of the new particles. These particles come as a left-handed SU(2)w doublet and
two right-handed singlets. The requirement of being anomaly free forces them to have opposite
electromagnetical charges with an absolute value of half the electron charge. Furthermore, the
model allows these particles to have a new SU(D)new colour. In this case, they are equivalent
to Okun’s θ -particles [14].

The spectral action puts strong constraints on the gauge couplings, the quartic Higgs
coupling and the Yukawa couplings of this model at the cutoff scale. Using the standard
renormalization group equations, these constraints allow us to calculate the masses of the new
particles and the mass of the Higgs boson at low energies. The masses of the new particles,
under the assumption of equal masses in all families, range then from ∼48 GeV to ∼69 GeV,
where up to three generations and new colour groups up to SU(8)new have been considered.
For the Higgs boson, the masses range from ∼164 GeV to ∼334 GeV.

One should note that these new particles could be the preferred decay products of the
Higgs boson. If they can hide from direct detection, this would mean that the Higgs boson
could also be much more difficult to detect.

It is also interesting to note that the cutoff scale of the spectral action is considerably
lowered by the presence of these new particles. For three generations and eight colours, it
sinks even below the Higgs mass, � ∼ 261 GeV for a Higgs mass of mH ∼ 334 GeV.
Remarkably, for colour groups larger than SU(2)new, one has to add at least three generations
of the new particles.

Many questions have not been considered in this article. Let us list some of these.

• Are the new particles directly detectable by existing experiments such as LEP and
Tevatron?

• Will the new particles be detectable by future experiments such as LHC?
• What is the phenomenology of the model? What are, for example, the stable colour

singlet states and confinement radii?
• Does the model contain a viable dark matter candidate?

This list is certainly not exhaustive and other interesting questions may arise. But the
model shows clearly that how difficult the extension of the standard model within almost-
commutative geometry will be in general. The constraints stemming from the spectral action
together with the geometrical constraints from the spectral triple formalism restrict model
building severely. Apart from the older AC-model [11, 12], which possesses a viable dark
matter candidate, this is so far the only model which could be in concordance with the
experiment.
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Figure A1. Krajewski diagram of the standard model with right-handed neutrino and Majorana-
mass term depicted by the dashed arrow. The new particles reside in the e-line and the e-column.
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c

d

e

f

Figure A2. Minimal Krajewski diagram associated with the diagram in figure A1.
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Appendix. The Krajewski diagram

In this appendix, we present the Krajewski diagrams which were used to construct the model
treated in this publication. Krajewski diagrams do for spectral triples what the Dynkin and
weight diagrams do for groups and representations. For an introduction to the formalism of
Krajewski we refer to [16, 13]. The Krajewski diagram for the model presented in this paper
is depicted in figure A1. It shows one generation of the standard model particles and one
generation of the new particles.
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The arrows encoding the new particles are drawn on the e-line and the e-column. Note
the similarity to the standard model quark sector which sits on the c-line and the c-column.
The dotted arrows denote the possible right-handed neutrinos and the dashed arrow represents
a possible Majorana mass term.

This diagram originates from the minimal diagram shown in figure A2. One remarks
immediately that the right-handed neutrinos as well as one of the right-handed new particles
can be neglected from the purely geometric point of view. But this model is not anomaly free
and has therefore to be excluded.

The multiplicity matrix µ associated with the Krajewski diagram in figure A1, with three
generations of the standard model particles and N generations of the new particles, can be
directly read off to be

µ =




0 0 0 0 0 0
0 0 0 0 0 0

−3 6 0 0 0 0
−3 3 0 0 0 0
−N 0 0 0 0 2N

0 0 0 0 0 0




. (A.1)

The axiom of the Poincaré duality is fulfilled since det(µ−µt) = 81(2N)2 �= 0 for all N ∈ N.
Only the right-handed neutrinos violate the axiom of orientability [25] which is also the case
for the pure standard model.
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